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TESTING PROCEDURES BASED ON THE

EMPIRICAL CHARACTERISTIC FUNCTIONS II:

k-SAMPLE PROBLEM, CHANGE POINT PROBLEM

Marie Hušková — Simos G. Meintanis

ABSTRACT. This is the second part of a partial survey of test procedures based
on empirical characteristic functions. We focus on the k sample problem and on
detection of a change in the distribution of a sequence independent observations.

1. Introduction

Tests based on empirical characteristic functions (ecf’s) for k-sample problem
and for the detection of changes are constructed along the line of the procedures
described in Part I. Let us recall that they are based on a weighted distance of
empirical characteristic function and null hypothesis corresponds to equality of
their theoretical counterparts while under alternatives it is positive. We describe
the procedures and their properties with relevant references.

2. k sample problem

Let Y j = (Yj,1, . . . , Yj,nj
)T , j = 1, . . . , k be k independent random samples, the

distribution function related to the jth sample is Fj . For k-sample the testing
problem

H0 : F1 = . . . = Fk against H1 : H0 is not true (2.1)
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we consider test procedures based on empirical characteristic functions

φ̂j(t) =
1
nj

nj∑
j=1

exp{itYjs}, t ∈ R1, j = 1, . . . , k, (2.2)

φ̂(t) =
k∑

j=1

nj

n
φ̂j(t), t ∈ R1. (2.3)

We assume that the sample sizes satisfy

lim
n→∞nj/n = pj ∈ (0, 1), j = 1, . . . , k (2.4)

and that the weight function β(.) fulfills:

β(t) = β(−t) ≥ 0, t ∈ R1, and 0 <

∞∫
−∞

β(t) dt <∞. (2.5)

The test statistics for the testing problem (2.1) is defined as

Tn(β, k) =

∞∫
−∞

k∑
j=1

nj |φ̂j(t) − φ̂(t)|2β(t) dt. (2.6)

Clearly, large values indicate that H0 is violated. The test statistics Tn(β, k) can
be expressed as

Tn(β, k) =

∞∫
−∞

k∑
j=1

n

nj

(
Zjn(t) − njZn(t)

)2
β(t) dt,

where

Zjn(t) =
1√
n

nj∑
s=1

((
cos(tYjs) + sin(tYjs)

)−EH0

(
cos(tYjs) + sin(tYjs)

))
,

Zn(t) =
1
n

k∑
j=1

Zjn(t), Zn(t) =
(
Z1n(t), . . . , Zkn(t)

)T
, t ∈ R1

Zn =
{
Zn(t), t ∈ R1

}
.

Next we formulate the assertion on the limit behavior under H0. We use the
notation: H = L2(R1,B, β) is a space of measurable functions f : R1 → R1

satisfying
∞∫

−∞
f2(t)β(t) dt <∞ with the inner product and the norm in H denoted

by

< f, g >=

∞∫
−∞

f(t)g(t)β(t) dt and ||f ||2 =

∞∫
−∞

f2(t)β(t) dt,
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respectively. The notation →D means the convergence in distribution of random
elements and random variables , →P stands for the convergence in probability.

������� 2.1� Let Y j = (Yj,1, . . . , Yj,nj
)T, j = 1, . . . , k be independent iden-

tically distributed (i.i.d.) random variables with common distribution F and let
(2.4) and (2.5) be satisfied. Then, as n→ ∞,

Zn →D Z

and

Tn(β, k) →D

∞∫
−∞

k∑
j=1

1
pj

(
Zj(t) − pjZ(t)

)2
β(t) dt,

where Z =
{
(Z1(t), . . . , Zk(t))T, t ∈ R1

}
is a k-dimensional Gaussian process

with zero mean, with independent components and the covariance structures

cov
(
Zj(t1), Zj(t2)

)
= pj cov

(
cos(t1Y ) + sin(t1Y ), cos(t2Y ) + sin(t2Y )

)
, t1, t2 ∈ R1,

where Y has the distribution function F . Here Z(t) =
k∑

j=1

Zj(t).

Clearly, the limit distribution of Tn(β, k) is not asymptotically distribution free
even under H0 (see covariance structure of the process).

Remark 2.1� The proof goes along the line of those in M e i n t a n i s [8], where
k = 2 is treated in detail. Therefore the proof is omitted. Both theoretical results
and simulation study are included there. E p p s and S i n g l e t o n [2] employed
Mahalanobis-type distance between the ecf’s, whereas A l b a et al. [1] used an
L2 distance.

Remark 2.2� The Efron bootstrap with or without replacement can be applied
in order to get an approximation for critical values. It provides asymptotically
correct approximations only when data follow H0 or some local alternatives.
Generally, the bootstrap version T ∗

n(β, k) of Tn(β, k) has the same limit distri-

bution as Tn(β, k) corresponding to the distribution H(x)=
k∑

j=1

pjFj(x), x ∈ R1.

At any case T ∗
n(β, k) = OP (1) while under large spectrum of alternatives Tn(β, k)

→P ∞. Therefore the approximation of the critical values through the bootstrap
leads to the consistent test, i.e., using the bootstrap approximation of the crit-
ical values we reject the null hypothesis for fixed alternatives with probability
tending to 1, as n→ ∞.

Remark 2.3� Under fixed alternativesH1 the test statistics Tn(β, k) are tending
to ∞ in probability. Concerning the behavior of Tn(β, k) under local alternatives
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we restrict ourselves to the case when the null distribution F0 is symmetric and
absolutely continuous with the density f0 and we consider the following class of
alternative hypotheses:

Hn : Yj,1, . . . , Yj,nj
are i.i.d. with common density gn,j

with

gn,j(x) =
(

1 +
κ√
n
uj(x)

)
f0(x), j = 1, . . . , k, x ∈ R1, (2.7)

where κ �= 0 and uj , j = 1, . . . , k are measurable functions such that∫
uj(x)f0(x) dx = 0, 0 <

∫
u2

j(x)f0(x) dx <∞, j = 1, . . . , k. (2.8)

By the third LeCam’s lemma the sequence of distributions with densities{
Πk

j=1Π
nj

s=1gn,j(yjs)
}

is contiguous w.r.t. the sequence of
{
Πk

j=1Π
nj

s=1f0(yjs)
}

and this in combination with the limit behavior under H0 implies that also
under Hn (2.7) Theorem 2.1 remains true with Z replaced by its shifted version.

������� 2.2� Let Yj,1, . . . , Yj,nj
, j = 1, . . . , k follow the model (2.1) with Yjs

being i.i.d. with common density gjn defined in (2.7) satisfying (2.8). Let β satisfy
(2.5). Then there is a zero-mean Gaussian process Z =

{
Z(t); t ∈ R1

}
such

that, as n→ ∞, {
Zn(t); t ∈ R1

}→D
{
Z(t) + κµ(t); t ∈ R1

}
and

||Tn(β, k)||2 →D

∞∫
−∞

k∑
j=1

1
pj

(
Zj(t) − pjZ(t) − κpjμ

0
j(t)
)2
β(t) dt.

The process
{
Z(t); t ∈ R1

}
is from Theorem 2.1 and µ(t) and µ0(t) have the

components

μj(t) =
∫ (

cos(tx) + sin(tx)
)
uj(x)f0(x) dx, j = 1, . . . , k,

μ0
j(t) = μj(t) − pj

k∑
s=1

psμs(t), j = 1, . . . , k, t ∈ R1.

The proof of this theorem will be done in a separate paper.
Since the assertion holds true for any κ �= 0 we find that with increasing κ and
||µ0||2 �= 0 the nonrandom part of Tn(β, k), i.e., κ||µ0||2 dominates the random
one and approaches to ∞. Therefore our test procedure is consistent as soon as
κ→ ∞.
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Remark 2.4� A number of modifications can be introduced, for instance, rank
based procedures. Additionally we assume that the random variables Yj,s, j =
1, . . . , k, s = 1, . . . , nj have continuous distribution functions. Denote Rr,q the
rank of Yr,q among Yj,s, j = 1, . . . , k, s = 1, . . . , nj for r = 1, . . . , k, q =
1, . . . , nr. Then for the testing problem H0 versus H1 one can develop along the
above line the test procedures based on empirical characteristic functions of these
ranks. Particularly, replacing the empirical characteristic functions φ̂j(.), j =
1, . . . , k, in (2.6) by their counterparts based on ranks, i.e., by

φ̂j(t,R) =
1
nj

nj∑
j=1

exp{itRjs}, t ∈ R1, j = 1, . . . , k (2.9)

with R = (Rr,q; r = 1, . . . , k, q = 1, . . . , nr) we get Tn(β, k,R). Then the limit
distribution of Tn(β, k,R) under H0 is the same as that of Tn(β, k) when the
observations Yj,s, j = 1, . . . , k, s = 1, . . . , nj are i.i.d. with (0, 1)- uniform dis-
tribution. This test procedure is distribution free under H0. Nevertheless, the
explicit form of the limit distribution is unknown. However, it can be easily
simulated.

Remark 2.5� Next we discuss relation to U -statistics, for simplicity we focus
on k = 2. Replacing empirical characteristic functions in Tn(β, 2) by theoretical
ones and nj/n by qj , j = 1, 2 we get its theoretical counterpart:

T (β, φ1, φ2) =
∫
q1q

2
2 |φ1(t) − φ2(t)|2β(t) dt,

where φj(.) is the characteristics function of the jth sample, j = 1, 2. This can
be further rewritten as a functional of the distribution functions Fj , j = 1, 2:

T (β, φ1, φ2) = q1q
2
2

∫∫∫∫
hβ(x1, x2; y1, y2)dF1(x1) dF1(x2) dF2(y1) dF2(y2),

where

hβ(x1, x2; y1, y2) =hβ(x1 − x2) + hβ(y1 − y2)

− 1
2
(
hβ(x1 − y1)

+ hβ(x1 − y2) + hβ(x2 − y − 1) + hβ(x2 − y2)
)
,

hβ(z) =
∫

cos(tz)β(t) dt. (2.10)
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This functional can be estimated by U -statistics

Un1,n2(β)

=
1

n1(n1 − 1)
1

n2(n2 − 1)

n1∑
i1=1

n1∑
i2=1,i2 �=i1

n2∑
j1=1

n2∑
j2=1,i2 �=j1

hβ(Xi1 , Xi2 ;Yj1 , Yj2).

This is a two-sample U -statistic with degenerate kernel under H0. This can be
also used as the test statistics for our problem. Limit behavior is a little bit simple
but again a bootstrap has to be used in order to get approximation for critical
values. See , e.g., L e e (1990) and M a d u r k a y o v á [7] for more information.

3. Change point problem

This section concerns test procedures for detection of changes based on empiri-
cal characteristic functions. We assume that Y1, . . . , Yn are independent random
variables, Yj has a distribution function Fj , j = 1, . . . , n and we consider the
testing problem

H0 : F1 = . . . = Fn (3.1)
against

H1 : F1 = . . . = Fm �= Fm+1 = . . . = Fn for m < n, (3.2)

where m,F1 and Fn are unknown. Motivated by the two-sample tests based
on empirical characteristic functions H u š k o v á a n d M e i n t a n i s [5] have
introduced the following class of test statistics:

Tn,γ(β) = max
1≤k<n

(
k(n− k)

n2

)γ
k(n− k)

n

∞∫
−∞

|φ̂k(t) − φ̂0
k(t)|2β(t) dt, (3.3)

where β(·) is a nonnegative weight function satisfying (2.5), φ̂k(.) and φ̂0
k(.) are

empirical characteristic functions based on Y1, . . . , Yk and Yk+1, . . . , Yn, respec-
tively, i.e.,

φ̂k(t) =
1
k

k∑
j=1

exp{itYj}, φ̂0
k(t) =

1
n− k

n∑
j=k+1

exp{itYj}, k = 1, . . . , n,

(3.4)
and γ is a nonnegative constant.

Concerning the choice of the tuning parameter γ, it would be natural, in
accordance with other test procedures for detection of changes, to choose γ = 0,
then our test statistic is maximum of the standardized test statistics for two
sample problem, where the observations are split into two groups with k and
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n − k observations. However, the disadvantage of this test statistic is that it
tends to infinity even under the null hypothesis. More precisely, under H0 and
mild assumptions on w, as n→ ∞,

Tn,γ(β) → ∞, γ = 0

in probability, while

Tn,γ(β) = OP (1), γ > 0.

Large values of the tests statistics indicate that the null hypothesis is violated.
Next, we present assertion on the limit behavior of Tn,γ(β) under H0. It

can be formulated similarly as for the k-sample problem through functionals of
Gaussian processes, but here we present it through a functional of Brownian
bridges. Toward this we need following notation. Put

h̃β(x, y) = hβ(x− y) − EH0hβ(x− Ys)

−EH0hβ(Yr − y) (3.5)

−EH0hβ(Yr, Ys), r �= s,

where hβ(·) is defined in (2.10). Since the properties of the function h̃β(x, y)
and since E h̃2

β(Y1, Y2) =
∫
h̃2

β(x, y) dF (x) dF (y) < ∞ there exist orthogonal
eigenfunctions

{
ψj(t), j = 1, 2, . . .

}
and eigenvalues {λj, j = 1, 2, . . .} such that

(see, e.g., S e r f l i n g [9])

lim
K→∞

∞∫
−∞

∞∫
−∞

⎛⎝h̃β(x, y) −
K∑

j=1

λjψj(x)ψj(y)

⎞⎠2

dF (x) dF (y) = 0, (3.6)

∞∫
−∞

ψ2
j (x) dF (x) = 1, j = 1, 2, . . . , (3.7)

∞∫
−∞

ψj(x)ψi(x) dF (x) = 0, i �= j = 1, 2, . . . (3.8)

and

E h̃2
β(Y1, Y2) =

∫
h̃2

β(x, y) dF (x) dF (y) =
∞∑

j=1

λ2
j . (3.9)

Here is the assertions on the limit behavior of the test statistic Tn,γ(β) un-
der H0.
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������� 3.1� Let Y1, . . . , Yn be i.i.d. random variables with common distri-
bution function F . Let β satisfy (5). Then (i) for γ > 0 the limit behavior of
Tn,γ(β) is the same as that of

sup
0<z<1

(
z(1 − z)

)γ∣∣∣∣∣
(∫

β(t) dt−E hβ(Y1, Y2)

)
+

∞∑
j=1

λj

{
B2

j (z)
z(1 − z)

− 1

}∣∣∣∣∣, (3.10)

where
{
Bj(t), t ∈ (0, 1)

}
, j = 1, 2 . . . , are independent Brownian bridges, (ii)

for γ = 0, as n→ ∞
Tn,0(β)(log logn)−1 = OP (1), Tn,0(β) →P ∞.

Remark 3.1� The explicit distribution of (3.10) is unknown. By properties of
Brownian bridges this random variable (3.10) is OP (1).

Remark 3.2� Since the eigenvalues {λj} and eigenfunctions {ψj}j depend on
the underlying distribution function F which is unknown, the limit distribution
of (3.10) depends on the unknown parameters and unknown functions so that
the limit distribution does not provide a useful approximation for the critical
values.

Remark 3.3� These procedures, as well as related procedures based on empir-
ical characteristic function of ranks, were developed and studied in H u š k o v á
and M e i n t a n i s [5] and [6]. Bayesian like type procedures were studied in
H u š k o v á and M e i n t a n i s [4].

Remark 3.4� Similarly as in the previous section, bootstrap with and without
replacement provide reasonable approximations for critical values. Such approx-
imations are asymptotically valid when the data follow the null hypothesis or
local alternatives. Particularly, bootstrap without replacement leads to a test
with level α, while bootstrap without replacement leads to tests with asymp-
totic level α. In case of the so called fixed alternatives resampling methods do
not lead to an asymptotically valid approximation to the critical values, however
the resulting tests are consistent.
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